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Abstract

We present a novel automated strategy (PISTACHIO) for the probabilistic assignment of backbone and
sidechain chemical shifts in proteins. The algorithm uses peak lists derived from various NMR experiments
as input and provides as output ranked lists of assignments for all signals recognized in the input data as
constituting spin systems. PISTACHIO was evaluate00000000d by comparing its performance with raw
peak-picked data from 15 proteins ranging from 54 to 300 residues; the results were compared with those
achieved by experts analyzing the same datasets by hand. As scored against the best available independent
assignments for these proteins, the first-ranked PISTACHIO assignments were 80—100% correct for
backbone signals and 75-95% correct for sidechain signals. The independent assignments benefited, in a
number of cases, from structural data (e.g. from NOESY spectra) that were unavailable to PISTACHIO.
Any number of datasets in any combination can serve as input. Thus PISTACHIO can be used as datasets
are collected to ascertain the current extent of secure assignments, to identify residues with low assignment
probability, and to suggest the types of additional data needed to remove ambiguities. The current
implementation of PISTACHIO, which is available from a server on the Internet, supports input data from
15 standard double- and triple-resonance experiments. The software can readily accommodate additional
types of experiments, including data from selectively labeled samples. The assignment probabilities can be
carried forward and refined in subsequent steps leading to a structure. The performance of PISTACHIO
showed no direct dependence on protein size, but correlated instead with data quality (completeness and
signal-to-noise). PISTACHIO represents one component of a comprehensive probabilistic approach we are
developing for the collection and analysis of protein NMR data.

Introduction

NMR resonance assignment, the key step in data
analysis in which chemical shifts are assigned to
individual nuclei in a covalent structure, has per-
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sisted as one of the main challenges in solving
structures of proteins from NMR data. Automa-
tion of this step is desirable from the standpoints of
speeding up the process of structure determination
and of providing a more objective analysis of the
input data. Most assignment strategies analyze
data from multidimensional, multinuclear datasets
by a stepwise approach that derives from one
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described by Kurt Wiithrich and coworkers for
two-dimensional proton spectra (Billeter et al.,
1982; Wider et al., 1982). First, signals from dif-
ferent experiments are aligned in comparable
dimensions. Individual resonances are grouped
into spin systems that are used in the typing stage to
score the amino acid identity of spin systems. In
the local assembly step, sequentially related spin
systems are identified. These are then mapped onto
the primary sequence in the global assembly (or
mapping) stage. Different automation programs
implement each step with varying degrees of success.

A number of computerized approaches to the
backbone assignment problem have been described
(Gronwald and Kalbitzer, 2004). Some software
packages achieve partial automation of sidechain
assignments, for example, GARANT (Bartels
et al., 1997) or the combination of GARANT and
AUTOPSY (Koradi et al., 1998). However, to our
understanding, a satisfactory, flexible, and truly
automated approach to the overall assignment
problem has yet to be presented. Many laboratories
continue to invest considerable effort in manual
assignments to ensure quality.

The need for a mechanism for modifying the
allowed input data to include results from new
NMR experiments and combinations of experi-
ments can be understood by considering the
problem of experiment selection. In larger pro-
teins, differences in resonance transfer efficiencies
make it difficult to obtain signals from all side-
chain carbons in a single spectrum. Complete
sidechain assignments may require the collection
of data from specialized experiments (Celda and
Montelione, 1993; Lin and Wagner, 1999), whose
choice will depend on the size of the protein, the
amino acid sequence, the labeling, pattern, and the
instrumentation available for data collection. For
these reasons, a workable approach for automated
assignment should be capable of utilizing any
combination of experiments deemed necessary by
the experimenter (Bax et al., 1990a, b; Fesik et al.,
1990; Gronwald and Kalbitzer, 2004). Therefore,
the algorithm used for automated assignment
should allow for easy extension of experiment lists
and should not impose any restrictions on the
combination of experiments used.

Noise is a common factor in most real-world
optimization problems. Sources of noise include
limitations in instrument sensitivity and precision,
incomplete sampling, and inconsistent human—

computer interactions. Major sources of noise in
the NMR assignment problem are variability in
data quality (peak overlaps and peak widths),
variability in peak picking (extra peaks or missing
peaks), and variability in spin-system scoring. The
formal theoretical underpinning we seek requires
approaches that deal with noisy data and quantify
the effects of noise on the output. Our approach is
to build methods within the well-established
structure of probability theory, which offers the
formal theoretical “glue” that can connect indi-
vidual pieces of the structure analysis process.
Probabilistic methods have the advantage of being
able to deal with noise and uncertainty within the
same rigorous framework.

Resonance assignment programs can be cate-
gorized by the methods they use in the mapping
steps. These methods include stochastic
approaches, such as simulated annealing/Monte
Carlo algorithms (Buchler et al., 1997; Lukin
et al., 1997; Leutner et al., 1998), genetic algo-
rithms (Bartels et al., 1997), exhaustive search
algorithms (Atreya et al., 2000; Andrec and Levy,
2002; Coggins and Zhou, 2003; Jung and Zweck-
stetter, 2004), heuristic comparison to predicted
chemical shifts derived from homologous proteins
(Gronwald et al., 1998), and heuristic best-first
algorithms (Zimmerman et al., 1994; Li and
Sanctuary, 1997; Hyberts and Wagner, 2003). For
example, AutoAssign (Moseley et al., 2001) is a
constraint-based expert system that uses a heuris-
tic best-first mapping algorithm. Among these
algorithms, those that rely on stochastic
approaches have the best potential for satisfacto-
rily addressing issues arising from noise.

As we discuss in the next section, mathematical
arguments indicate that a general solution to the
assignment problem requires a new approach sep-
arate from those realized to date. The straightfor-
ward combinatorial approach to the NMR
assignment problem is to consider the set of all
possible configurations for the assignment and to
find the one with the lowest ““cost’. This approach
has two notable drawbacks. From a practical
computing point of view, exploring the set of all
configurations is computationally intractable —
particularly for large proteins. The more formida-
ble difficulty lies in the fact that all acceptable cost
functions involve noisy, local experimental data.

The approach we use in PISTACHIO recasts
the cost function as a measure of “‘system energy”



and restates the optimization problem in the
physical terms of finding a “ground state”. This
restatement enables us to ask questions that turn
out to have tractable solutions with practical
applications. For example, we can ask for a “typ-
ical low energy configuration” and find a compu-
tationally feasible (polynomial time) solution that
gives a great deal of information about the
“ground state”. This is pertinent to the NMR
assignment problem, since the available data may
not support a unique set of assignments. An addi-
tional advantage to this approach is that it yields a
set of assignment configurations with their associ-
ated probabilities that can be explored and refined
further as additional data become available.
Another difficulty arises from the local nature
of the data provided by the relevant NMR
experiments. Even for an individual amino acid
residue, the database of available chemical shifts is
insufficient to construct the accurate multidimen-
sional distributions necessary for building an
optimal score function. Our solution to this chal-
lenge has been to build highly accurate analytic
expressions for one-dimensional chemical shift
distributions, to use correction factors to extend
these to multidimensional score functions, and to
take advantage of the sharpening of probabilities
afforded by the multiple dimensions. This last step
is achieved by parsing the sequence of the protein
into overlapping tripeptides and by computing
scores and overlap functions for these. The novelty
of our approach comes from the analysis of
overlapping tripeptides and the algorithms we
have devised for scoring each tripeptide and for
assembling them into a single scored sequence.
Probabilistic Identification of Spin Systems and
their Assignments including coil-helix Inference as
Output (PISTACHIO) is part of a larger effort on
the automated analysis of protein NMR data. A
single software platform has been developed that
uses as input the sequence of the protein and peak
lists derived from various experimental multidi-
mensional, multinuclear magnetic resonance
datasets and that provides as output chemical shift

Table 1. Conventional method of assigning protein NMR signals
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assignments and secondary structure analysis. The
output is conveniently reported in NMR-STAR
format that can be readily deposited in BMRB.
PISTACHIO uses the package PECAN (Eghbal-
nia et al., 2005) to identify secondary structure
elements from the protein sequence and associated
assigned chemical shifts. Both packages are avail-
able for general use from a server at http://
bija.nmrfam.wisc.edu

Materials and methods
Analysis of the NMR assignment problem

NMR experiments used for backbone assignments
yield two types of chemical shift correlations:
inter-residue and intra-residue. These correlations
are used to construct intra- and inter-residue spin
systems, consisting of connected nuclei and their
chemical shifts. After intra-residue spin systems
have been constructed, the process of spin system
typing assigns a positive score to each spin system.
The score signifies a measure of correspondence
between spin system j and residue i.

If we consider the cost of assignment, C(j,i), as
the negative of the score, then the following
assignment strategy can be formulated. Number
the residues and spin systems with integers from 1
to n as shown in the first two rows of Table 1. As-
sume that as many spin systems have been identified
as there are residues — we will relax this assumption
shortly. Next, rearrange the residue numbers to get
the perfect assignment by minimizing a total cost
function. This is shown, for example, by the cor-
respondence between the first and the third row.
Note that the third row is obtained by a permuta-
tion of the second row in which the numbers shown
in bold are not permuted.

To formalize this problem, let o(i)=; denote a
permutation of i/ to j. Then we can describe the
optimal assignment as a search in the space of
permutation matrices to obtain the minimum cost
as follows:

Spin systems 1 2 3 4 5 6
Residues 1 2 3 4 5 6
Assigned residues 6 2 9 3 5 4

8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15
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argmin Z C(a(i), i)

In the classical mathematical setting, this problem
is also known as the “assignment problem’ where
the term ‘‘assignment” describes the problem
concerned, typically finding the best way to assign
n persons to n jobs. The permutation matrix,
which minimizes the cost expression and deter-
mines the maximum matching by use of an effi-
cient algorithm of O(n?), was first demonstrated by
Kuhn in 1955. This was a rediscovery of work by
two Hungarian mathematicians, D. Konig and E.
Egervary, that predated the birth of linear pro-
gramming by more than 15 years. The approach,
therefore, is known as the “Hungarian method”.
Starting with the work of Edmonds (1965) and
building on earlier work of Tutte (1947), this ap-
proach has been used to address satisfactorily a
number of optimization problems, in particular
the “optimal weighted graph matching problem”.
In NMR, the inter-residue connectivity infor-
mation constrains the minimization problem out-
lined above by restricting the set of permutations to
those that do not violate the observed data in the
experiments. To take this into account, we could
reformulate the problem by associating a “‘con-
nectivity cost” to each permutation as given by

arggréisn Z Z liB(a(i),a(j)) + Z C(a(i), 1)
"=l j=1 i=1

The second term is the same as before, whereas
the new term B represents the cost of assigning the
spin system pair (i,j) to residues (c(i),5(j)). This
cost is weighted by /;;, which is a “‘small number” if
the connectivity between pair (i,j) is observed and
a “large number” otherwise. Although the “‘best
matching problem” illustrated in Table 1 has an
O(n?) solution, the more complicated optimization
problem formulated above, commonly known as
the “quadratic assignment problem” (QAP) or the
“weighted bipartite graph matching problem”
(a restricted case of QAP), is known to be NP-
hard (Gonzalez, 1996).

The constrained weighted bipartite graph-
matching formulation approach to automated
NMR assignments (Ikura et al., 1990; Xu et al.,
1993; Geerestein-Ujah et al., 1996; Moseley and
Montelione, 1999; Bailey-Kellogg et al., 2000; Pe-

rmi and Annila, 2001; Andrec and Levy, 2002;
Coggins and Zhou, 2003; Malmodin et al., 2003),
can be considered as a specialized version of the
QAP approach in which the values for /;; and B are
specified in advance. The remarkable number of
practical applications formulated as QAP has
spurred research in a wide community and has led
to a number of specialized solutions. Several useful
protein NMR software tools attempt to solve the
QAP problem by the use of various approxima-
tions (Eccles et al., 1991; Nelson et al., 1991;
Leopold et al., 1994; Bartels et al., 1997; Leutner
et al., 1998; Atreya et al., 2000; Chen et al., 2003;
Hitchens et al., 2003), possibly inspired by existing
specialized solutions of the QAP. The best-known
approximations for finding solutions to typical
QAP problems are variations of the “branch and
bound” algorithms. Other approximations have
been proposed, including genetic algorithms, neu-
ral networks, and simulated annealing. These
approximations address the practical issue of
finding solutions; however, the important question
of determining the quality of solutions has re-
mained unanswered. Theoretical work (Burkard
and Fincke, 1985) has shown that the landscape of
score functions for QAP problems of practical size
is essentially flat. An inescapable consequence of
this theory is that any deterministic algorithm,
such as branch and bound or any of its heuristic
modifications, can yield a solution that is trapped
in a local minimum without providing any infor-
mation about the global minimum. These consid-
erations place serious practical limits on the
applicability of branch and bound-type methods
to the NMR assignment problem.

The nature of noise in determining the NMR
“cost function” makes the application of deter-
ministic combinatorial methods even less attrac-
tive. The difficulty arises at the spin system typing
and assembly stages, where one must assign a cost
or probability that a spin system (or group of spin
systems) belongs to a particular amino acid (or
sequence of amino acids) in the protein sequence.
After the time-domain data have been processed,
the peak-picking step identifies the chemical shifts
associated with each peak in the spectrum. The
accuracy of this step depends on the resolution and
sensitivity of the data collected, as well as choices
made by the expert. The intermediate construction
of spin systems and their scores depend on the
information content, noise, and ambiguity of the



data, and these vary from dataset to dataset. Noise
and ambiguity are inherent features of derived
NMR data; they are ever present and vary only in
degree. In addition, the noise in the scoring de-
pends on the model distributions of chemical
shifts. These problems are complicated further
upon lifting the earlier assumption regarding the
equality of resides in the sequence and intra-resi-
due spin systems identified in the experimental
data. In reality, the number of intra-residue spin
systems identified can exceed or fall short of the
number of residues. All the above sources of noise
will make it difficult to identify the single global
minimum, particularly within the context of
deterministic algorithms.

Evolutionary algorithms (EA) are general,
nature-inspired heuristics for numerical search and
optimization that are frequently observed to be
particularly robust with regard to the effects of
noise. This class of techniques, initiated by the
work of John Holland (1975), includes search
algorithms inspired by the process of natural
selection (biological evolution). The approach been
used for NMR assignments (Bartels et al., 1997).
The operation of EA depends on a multitude of
parameters in combination with fitness environ-
ments; together they form stochastic dynamical
systems that are not easily analyzed or understood.
The class of evolutionary algorithms for optimi-
zation, which encompass the methods of genetic
algorithms, evolutionary programming, and evo-
lutionary strategies (Davis, 1987, 1991; Goldberg,
1989; Holland, 1992; Koza, 1996), have been re-
ported to perform well under noisy conditions, as
supported by numerical results in test cases (Rana
et al., 1996; Nissen and Propach, 1998; Stroud,
2001). However, the successful implementations of
EA (Baum et al., 2001) in the presence of noise
have been limited to problems in which the noise
has a very special structure; and, as has been
pointed out (Michalewicz and Fogel, 2000), ““there
really are no effective heuristics to guide the choices
to be made that will work in general”.

The NFL (no free lunch) theory (Wolpert and
Macready, 1997) presents a formal analysis of
search algorithms for optimization, including the
EA, random search, and simulated annealing
approaches. The essence of NFL analysis is that in
the absence of prior knowledge or models, the
average performance of a given optimization
algorithm across all problems is as good as any
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other algorithm. This sobering statement reaffirms
that no general algorithm can replace careful
modeling of the specific problem.

Our earlier attempt to address these issues and
to develop a statistical approach to automated
assignments was embodied in the CONTRAST
software package (Olson and Markley, 1994; Ol-
son, 1995), which provides a ranked list of
assignment probabilities. CONTRAST attempted
to model noise, but is subject to the general limi-
tations discussed above. PISTACHIO, the new
approach we lay out here, addresses these chal-
lenges by transforming the deterministic, combi-
natorial optimization problem into a search for the
ground state configuration of a statistical system.
The local state of the statistical system is con-
structed in three steps. First, we parse peak lists
associated with particular experiments into the set
of all possible tripeptide spin systems specified by
the peptide sequence. Second, we score the list of
possible tripeptide assignments on the basis of our
prior analysis of the BMRB database of chemical
shifts, which has allowed us to create models for
the chemical shifts for each nucleus and each pair
of nuclei within amino acids taken singly and in
pairs. This makes use of a formula we have derived
that accurately computes probability scores for
matching chemical shift data to tripeptides. Third,
we assemble the overlapping tripeptides to match
the sequence and to achieve the optimal proba-
bilities for correct assignments. Each of the three
steps serves to restrict the size of the combinatorial
search space and to minimize the impact of noise
on the analysis. The impact of noise is further
ameliorated because the global ground state of the
model corresponds to a state that is “statistically
closest” to the reported observations of data (see
the supporting information for an outlined proof
and analysis of noise impact).

Mathematical model

Our starting point is to define a “local cost model”
for our system that has “suitable emergent global
properties”. By a local cost model, we mean that
the overall cost of assignment can be obtained as
the sum of costs for local assignment. By suitable
emergent global properties, we mean that our
solution for the global cost will satisfy all local
constraints and cost functions in the most optimal
way. We start by defining a set of local cost
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functions Jy as a function of the configurations Yy
that represent the spin system for a given tripep-
tide. We define the global cost as:

J(Y) = Z In(YN)

YNCY

To minimize the overall cost J,we can equivalently
maximize the following expression:

e =exp( Y —Jn(Y))
YNCY

= ] exp(=Jn(Yn))
YyCY
We can treat this as a probability by dividing by a
normalization factor:

P(v) =7 T] exp(—n(rx))

YNCY

We base the cost J on a QAP cost formula that we
restate as:

n n

J = Z Z ZU‘B(G(i)> O-(/))

i=1 j=1

—&-zn:C(a(i),i):Z‘P—&-Z(D (1)
e’ = e_ije_zd’

Upon dividing by the normalization factor to
obtain probabilities, and by denoting the set of all
permutations as X, we obtain:

P(2) = [T exp(~¥(a(). o))

x T] exp(~ (o) ) 2)

In the expression above, the second part
measures the merit of assigning a tripeptide spin
system @ to a given amino acid triple, whereas the
first part ¥ provides a measure of the compati-
bility of adjacent and overlapped spin systems. We
describe below how the value of @ for each trip-
eptide is obtained. We define the value of ¥ by

u=(—k(C"x,C,y)) ifu<—ex#y
Y(x,y)=1¢ —¢ ifu>—ex#y
B ifx=y

In the above formula, & is a fixed and empir-
ically obtained positive constant that sets the scale

of local costs. The parameter ¢ is used as a control
parameter to test the local “flatness” of the solu-
tion surface, and B is set to a value much larger
than k to inhibit duplicate selection. The expres-
sions C"x and C,y represent projection of the
chemical shift coordinates onto the last n and first
n coordinates, respectively. Intuitively, when n
represents the spin-system size for a single residue
overlap and the neighboring tripeptides are AKC
and CDE, with the overlapping residue being C,
we assign a score to the compatibility of the
chemical shift values of C in each triplet pair. The
number of projected coordinates (or overlapping
residues) is changed in a controlled manner to
obtain information regarding the consistency of
local scores. The above prescription for the value
of W encodes our objective to make assignments
that violate connectivity information ‘‘energeti-
cally unfavorable”. One major practical advantage
of this formulation is its generality. It does not rely
on a specific experiment or set of experiments and
thus enables easy and efficient incorporation of
new experiments into the framework. The resulting
model can be represented in the form of a graph
G=(V, W), with vertices V" and edges W (Figure 1).
In this graphical representation of our model, two
overlapping residues in neighboring tripeptides are
connected by an edge in order to enforce the
neighborhood constraint. Tripeptides and the trip-
let spin systems (also represented by vertices) are
connected by an edge that represents the possibility
that the spin system may correspond to the given

@Triplct spin System

oTripeplidcs

.. ALA,CYS

ALA, CYS,LYS  CYS,LYS,SER LYS, SER,...

Figure 1. Graphical representation of the energetic model for
the case of two overlapping residues in neighboring tripeptides.
The tripeptides are the upper vertices, and the triplet spin
systems are the lower vertices. An edge between a tripeptide and
a triplet spin system represents the possibility that the spin
system belongs to that residue.



residue. The weights along the edges or those for
individual vertices represent local information, and
the task of the algorithm (see below) is to find the
most consistent global assignment described by the
probability distribution.

To achieve our goal of deriving probabilities
for the pairing of pair spin systems with residues
(the @ term), we must calculate the marginal
probability instead of the joint probability given
by Equation 2. Whereas the joint probability
provides the frequencies of pairing of spin systems
and residues occurring simultaneously across the
amino acid sequence, the marginal probability
indicates the fidelity achieved in pairing a specific
spin system with a particular residue.

Brute force computational approaches to
deriving marginal probabilities grow exponentially
in computational time with the number of assign-
ments to be made, and, therefore, are impractical
even for small proteins. Our approach is to derive
the marginal probability by an iterative approxi-
mation algorithm. The algorithm exploits parallels
between the formula above and particle interac-
tion problems in statistical physics. To achieve
global consistency, the algorithm works on clusters
of residues that share common residues and eval-
uates the cumulative measure of merit (joint and
marginal probabilities) for each cluster. Values in
every overlap cluster are adjusted in a way that
moves the global cost in the direction of the min-
imum. In each iterative step, the error gradients in
local clusters are transmitted to larger clusters, and
relative weight adjustments are performed. This
process of adjusting the values in the overlap
clusters continues until values computed from two
starting points differ by only a small € value.

In recent years, a number of techniques based
in probability, geometry, and functional analysis
have yielded great insight into probability distri-
butions in multi-dimensional settings (Talagrand,
1995). In intuitive language, the probability dis-
tribution of joint events tends to become more
concentrated around its mean (or median) as we
consider more and more events. In the assignment
problem, one can take advantage of this property
by considering tripeptide resonance systems
whenever an accurate estimate of their probabili-
ties can be obtained. The tripeptide spin systems
are assembled from spectral data that provide in-
tra-residue and inter-residue connectivities. One of
the advantages of this approach is that it accom-
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modates conditional probabilities: neglecting end
effects, each residue forms a part of three over-
lapping tripeptides.

To obtain accurate joint probability values, we
proceed as follows. Let 4, B, and C be subsets
representing events with probabilities of occur-
rence |A|,|B|, and |C|, respectively. The following
basic relationship and its generalization to subsets
denoted by |4,| follow a standard counting argu-
ment and the joint probability is obtained by
considering the value of the complement:

|AUBUC|=|A|+|B|+|C|—|4ANB|
—|ANC|—|BNC|+|ANBNC]

(3)

n

[A|=]A41UA U UA, =) [Ad— Y [4in4)]

i=1 pairs(ij)
+ > AnANA ...
triples(ijk)
(=) ANAN 4NN A, (4)

This formula, however, does not lead to suf-
ficiently accurate probabilities for the tripeptide
spin systems or its complement 1 — |4]. It is clear
from Equation 4 that an accurate estimate of
individual probabilities |4;| in the first term of the
expansion is required and that the first- and
higher-order correlations (dependent events) also
need to be evaluated. However, we have sufficient
database information to build only the first two
terms in the expansion. For this reason, we have
rewritten the expression in a way that yields a
good estimate from first two terms alone.

|A| ~ 1 —HN,‘HNU‘
i J>i
Ni=1-14;, Nj=N;'+N;'
= NN = (400 4y))

Computational aspects

The input data consist of peak lists derived from a
set of multidimensional NMR experiments. This set
can include experiments such as HSQC, HNCO,
CBCA(CO)NH, HNCACB, HN(CO)CACB,
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HNCA, HN(CO)CA, HN(CA)CO, HBHAC(-
CO)NH, C(CO)NH, HN(CO)(CA)CB,
HN(CA)CB, H(CCO)NH, NI15-TOCSY, and
HCCH-TOCSY. Any combination of these 15
experiments can be used to generate candidate spin
systems. The most sensitive experiment (typically
HSQC or HNCO) is used as the reference starting
point for spin system generation. For missing
chemical shifts, an empty value is assigned to the
nucleus. In cases where assignments are ambiguous,
all chemical shift possibilities for a given nucleus are
carried forward throughout the computation. PIS-
TACHIO uses a grid search for the best tolerance
for generating spin systems (see below). The values
typically searched are in the range of 0.02—-0.03 ppm
for 'H, 0.2-0.275 ppm for '°N, and 0.2-0.3 ppm for
13C dimensions. User can specify a search range
different from the default. PISTACHIO treats peak
lists from different experiments in an unbiased way
and uses all information entered to create the set of
candidate spin systems. By constructing profiles
(experiment description matrixes), one can cus-
tomize PISTACHIO so as to: (1) add additional
experiments, (2) assign different weightings to
experiments, (3) handle data from selectively la-
beled proteins, or (4) incorporate prior assignments
made by other means. Only (1) and (3) are currently
available from the PISTACHIO web server using
special instructions; (2) and (4) are achievable but
must be coded in by hand.

PISTACHIO performs preprocessing steps
prior to spin system generation. Of these, the most
important are alignment and best density and prob-
ability estimates. These are discussed briefly below.

Alignment

An alignment algorithm is used to compensate for
possible referencing errors or other source of glo-
bal shifting errors. Note that the matching of
peaks from different experiments is an ill-posed
problem, because the peaks expected from nuclei
common to more than one experiment cannot be
assumed to have been observed in each case. In
addition, non-linear peak displacements in differ-
ent spectra have been observed in real data. Our
algorithm attempts to obtain a global alignment of
common chemical shift axes in all datasets in an
automated fashion without trying to match indi-
vidual peaks. A linear shift is tried first, and if this
fails, then local adjustments are made. The intui-

tion behind the approach is to replace each peak
location with a probability distribution and to
attempt to match the distributions.

Best density and probability estimates

The chemical shift distribution model used by
PISTACHIO for an individual atom, amino acid
residue, or tripeptide is not Gaussian. Our
approach to deriving an accurate estimate for the
probability distribution is to obtain densities from
the largest class of distributions that (1) satisfy the
law of large numbers in probability, (2) have the
most parsimonious form, and (3) permit robust
estimates of their parameters from Monte Carlo
simulations. We have used data available from
BMRB to parameterize a set of distributions for
each nucleus in each amino acid. The details of the
methods involved will be presented in a separate
publication. The resulting distributions properly
capture the current statistics for the available data
and provide more accurate local probably estimates
than those derived from histograms (Figure 2).

Description of the PISTACHIO algorithm

The free energy minimization approach used by
PISTACHIO employs an iterative strategy that is
guaranteed to converge. The algorithm uses a
sequence of non-increasing energy states, called
strata, to control the combinatorial search in the
exponentially large number of states. For each
stratum, a sequence of sub-strata is used to control
the descent in energy by iteratively “squeezing” the
energy between a lower and upper bound. The
final “minimal energy state” specifies the configu-
ration corresponding to ‘“‘highest probability
states” for assignments ““most consistent’” with the
observed data in the presence of noise. This cor-
respondence utilizes the well-known equivalence of
minimum free energy state and the minimal sta-
tistical distance. The state that the algorithm
converges to is exact if the model described by
Equation 1 is correct. The consequences of noise
or ambiguities in the data are naturally reflected in
the assignment probabilities.

In order to describe the PISTACHIO algorithm
in a simple and accessible form, a number of nota-
tional conventions are necessary. Equation 2 is
rewritten as P(X) = Z ' [, ¥.(X,), where u can
be a single or a multi-index and U is a set of multi-



indices. We refer to u as a cluster and to U as a
cluster set. In the context of the graph notation
(G=(V, W)) introduced above, a cluster is a subset
of vertices of V" and a cluster set is a set of these
subsets. For example, when wu= {i},,(X,)
represents ¢(i,0(i)), and when u = {i,j}, (X))
represents (o (i),o(j)). The multi-index notation is
implied whenever an index is used with a capitalized
variable such as X or a function such as . The
notation X, is the shorthand for the random
vector (x;,X;,,..., X;), where the indices i; form the
multi-index or cluster u. The free energy for
our model (Figure2), F=> (logP,(X,)
—log, (Xu)), (x> av({log Py(x,)) gy  repre-
sents a refined appréximation to the “full” free
energy term (Landau and Lifshitz, 1980). A lower

T ‘\ I v
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Figure 2. Results from the classification of a random sample of
1000 '*C* chemical shifts for alanine to one of the 20 amino
acids by three different distribution models: the analytical
distribution used by PISTACHIO, a normal distribution, and
an optimal histogram. The bars indicate the percentage of
classification for each residue (vertical axis) based on our
analytical distribution. The blue line in the main figure indicates
the percentage of classification for each residue based on
optimal histograms. The approach used by PISTACHIO
follows the trend of results by an optimal histogram and leads
to a small but noticeable improvement in the classification
along this single chemical shift dimension (**C*). When spread
over multiple nuclei, enhancements of this type lead to evident
cumulative improvements in the assignments. The inset com-
pares the classification of our analytical model with one
obtained by fitting a normal distribution to the histogram data.
When fit with a normal distribution, the distribution of choices
is more entropic (less selective) and alanine is no longer
recognized as the most likely residue.
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case x is meant to denote our interest in the values of
the function for a cluster of size exactly one. In our
formulation some clusters are not disjoint, and we
need to correctly reflect the number of times each
cluster and the vertices in the intersection of clusters
are counted. The constants a, are used to count the
number of times a vertex v appears in the intersec-
tion of clusters in a cluster set U and the constants b,
are used to count the number of clusters in the set U.
PISTACHIO also selects a multi-index set U in each
iteration, which is defined in the display describing
the PISTACHIO algorithm below. The outer loop
of the algorithm repeats the iteration until no fur-
ther changes in the priority of assignments is ob-
served. A change in the priority of assignments is
observed if a previously unassigned spin system is
assigned or a previously assigned spin system
changes its assignment. Details are shown in
Figure 3.

Results

In the early testing stage of PISTACHIO, we used
as input simulated datasets obtained by decon-
structing BMRB entries into peak lists. Simulated
peak lists for one small protein (8.6 kDa), two
medium sized proteins (12-18 kDa), and one large
protein (40.6 kDa) led to average assignments
accuracies of 98% (results not shown). The BMRB
deposition for one of these proteins (BMRB 5106)
contained the raw peak lists, which enabled us to
compare the use of real vs. simulated data.
Whereas the simulated data yielded 69 spin systems
with 99% of the spin systems assigned, a subset of
the raw data (N15-HSQC, HNCO, HNCACB,
CBCA(CO)NH) yielded 66 spin systems with 90%
correctly assigned. This result confirmed our
expectation that true quality measurements can
only be obtained from tests on raw data.

Raw data in the form of peak lists were
obtained from collaborators at the National
Magnetic Resonance Facility at Madison (NMR-
FAM) and the Center for Eukaryotic Structural
Genomics (CESG). To get the best cross section of
results for testing our system, we adopted the
single requirement that input data be reported in
either the XEASY (Bartels et al., 1995) or NMR-
STAR (defined on the BMRB website http://
www.bmrb.wisc.edu) format. Users were free to
choose their experimental dataset combinations,
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Set P,(x,) =1
While Changing
increment iteration count /

Set P,(x,) initial value to scaled uniform distribution.
If any assignments change, repeat the steps.
Changing means change in assignment probabilities
that change assignment priorities.

Set Defaults

Defaults (below) sets starting values

While not converged

Converged means Delta F' < 0.000001.

Vu(X) € M(yu(X)

X% loghu(x,)

My, (X)N)=vw, (X, )e =

Estimate

Estimate algorithm take (y,(X,) as input and returns
new P,(x,) & P,(x,)

End of While

Return P,(X,) and P,(x,)

Converged values for probabilities

End While

Estimate Algorithm

The algorithm obtains probabilities based on the
current upper bound.

Set Pu(x.) =¢u(X) and Py(x,) = 1

While not converged

For all subsets indexed by v
Py(x,) & L(P\(x,)

1
a,

L(P,(x,) o P,(x,)*"" {H f;(x,,)}""””

usv

For all neighbors u
Pu(x) € T(Pu(xd))

T(P(X,) « P,(X, )P (x,)L(P,(x,))

End For

End For

End While

Return all P,(x,) and P,(x,)

Defaults Algorithm

The algorithm sets default values for PISTACHIO.

For each {C, N, H} search grid
{0.2,0.2,0.02} to {0.3,0.275,0.03} in
increments {0.01, 0.01, 0.002}

A sensitivity range is searched in order to obtain the
best-predicted assignment quality. This step is
typically necessary only once but is included in the
iteration in cases where re-tuning after “fixing” of
some spin systems.

Q = quality(C,N,H)

Quality is measured as defined by equation 5

End For

Prune high probability assignments

If this is not the first stratum, spin systems with high
probability of assignment (>99.5%) are fixed to their
current assignment.

For each triplet Y in the model
Find maximum number of edges
with lowest probabilities such
that the sum of probabilities is
bounded by 707"
Reconnect the spin system end
of vertex all removed edges to a
ghost vertex. Add all vertices
for this triplet to the set U
Renormalize all probabilities

Select cluster set U for current stratum. A cluster set
forms the multi-index set for the variable « used
above. / counts the number of iterations. The set U is
constructed from the set of vertices of the graph that
are incident to the edges for triplet Y. A ghost vertex is
used to represent the average state of removed spin
systems. Renormalization is necessary to correct for
removals that impact multiple triplets.

Figure 3. PISTACHIO algorithm (left column) and a corresponding description of the steps (right column).




the method they selected for peak picking (manual
vs. automatic), and the number of peaks reported.
The PISTACHIO assignments were scored against
the best set of assignments achieved by other
means. In some cases, the manual assignment used
for comparison benefited from corrections occur-
ring farther down the structure determination
pipeline. Nonetheless, our criterion for correctness
was agreement of the PISTACHIO results with the
best known assignments for the protein at hand.

In 10 of the 15 datasets tested (Table 2), PIS-
TACHIO achieved better than 90% correct
assignments for backbone resonances. Various
peak picking software packages (NMR_VIEW,
SPARKY, NMRPipe) were used in generating the
raw peak lists. The datasets contained different
fractions of noise peaks. Depending on the
experiment and method of peak picking, the peak
counts varied from approximately 0.7 times to 7
times the expected number of peaks.
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The quality of raw peak list data was the key
factor in determining the extent and correctness of
the assignments as well as the run times. In order to
assess the quality of our data, we use two notions of
quality. First, we use a post-analysis quality num-
ber that represents the percentage of peaks
assigned from a single typical experiment, generally
the HNCACB experiment, which produces a
moderately large number of “information rich”
peaks. We also use a pre-analysis quality measure
that reports a statistical expectation for the number
of assignments (see supporting information for
further discussion). To define this pre-analysis
quality, let S4 be the combinatorial set of vectors
enumerating chemical shift possibilities for spin
system ‘A4’ (for example, two different CO choices
for one NH). S, can be viewed as a matrix S 4(k,/)
where the columns are chemical shift vectors and
rows are chemical shift values for a given nucleus.
In the same way, we define S, 3¢ for the triplet spin

Table 2. Proteins assigned with PISTACHIO for which assignments made by other means were available for comparison

Protein Backbone Sidechain Experiments
designator represented in the
input peak lists®

Residues correctly CPU P>0.95 % CPU % 1 2 3 4 5 6 7 8

assignedb/assignable time correct® time correct®

residues (number of (h) (h)

Pro residues)
At2g24940 106/106 (3) 0.2 100% 100% 1 95% N Q
Atlg77540 96/97 (6) 0.2 100% 99% 0.1 95%
At2g23090 82/84 (2) 0.1 98% 97% c c
Mm202773 92/94 (4) 0.1 97% 97% 0.1 85% N
At5g22580 99/108 (3) 4 95% 92% 1 86% NN N
CE5073 108/118 (2) 4 95% 92% c c N N
At3gl7210 96/107 (5) 5 95% 90% 1 90% N
At3g51030 108/120 (4) 4 95% 90% 1 85%
At5g01610 95/115(5) 6 90% 83% c c
At3g16450¢ 232/291 (8) 5 85%"° 80% 2 75% N
Atl1g23750 122/152 (5) 6 85% 80% c c
Acyl carrier 70/72 (0) 0.7 99% 97% c c
BMRB 5106 61/68 (2) 1 95% 90% c c
YggX 71/89 (2) 4 80% 80% 1 75% NN
P-gamma 62/77 (10) 4 85% 80% c c N

“Each dataset included an HSQC or HNCO experiment; other experiments are indicated by numbers: / — CBCA(CO)NH or
HN(CO)CACB; 2 - HNCACB; 3 - HNCA; 4 — HN(CO)CA or CA(CO)NH; 5 — HN(CA)CO; 6 — H(CCO)NH or N15 TOCSY; 7 —
C(CO)NH; 8 - HBHA(CO)NH. °Correct assignments were achieved independently of PISTACHIO and based on the best available
assignment model; in most cases these assignments made use of additional information not available to PISTACHIO, such as
structural constraints. “Sidechain data had not been collected yet in these cases. YStereo array isotope labeled (SAIL) protein; isotope

shifts due to labeling were not accounted for.
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system in a tripeptide ABC. The quality factors b
(spin system quality factor), ¢ (connectivity quality
factor), and overall quality factor ¢ are defined as:

b= <I/€(SA)>A,IC7
q=Vbe (5)

I(S ,)(defined below) represents a count of unique
chemical shifts for spin system A.(LJ), x denotes
the expectation taken over all k in the spin systems
A. For residue B, the index m runs over all chem-
ical shift entries that belong only to the residues A4
and C. [ is defined by the following function:

¢ = ((In(S4Bc)) 4pcm>

(1 Salk, ) = Sk, IWVILE
1k(S4) = { 0 Otherwise

In(Sapc) = 1 Sasclm ) = Sasc(m, 1) V1,1
A Otherwise

All proteins with datasets of average or good
quality yielded assignments > 90% correct. Pro-
teins with PISTACHIO assignment scores <90%
were ones with spectra characterized as being of

low quality or with many overlapped and missing
peaks. Also in this category was a stereo array
isotope labeled (SAIL) protein, discussed below,
for which no corrections were made for isotope
effects on chemical shifts. Input datasets contain-
ing high noise (many more peaks than expected in
particular experiments) were not necessarily more
complex to assign than those with low noise. The
most difficult cases were ones in which “real” and
“noise” peaks were interspersed within the toler-
ances for separate peak recognition. For example,
spectra from protein At1g23750 contained many
overlapping peaks in a disordered region of the
protein. The overall assignment result for
At1g23750 was 80% correct, with assignment dif-
ficulties confined mostly to the unstructured region
(Table 3).

We found that the workstation time required
was inversely related the quality of the input data
and did not depend necessarily on the size of the
protein. According to the protein and data avail-
able, the computation required minutes to hours
on a single workstation (Table 2). The computa-
tionally demanding part of the assignment is the
iterative algorithm used to determine global con-
sistency described above.

Table 3. Completeness and quality of data used for test of automated assignments by PISTACHIO

Name PEAKS Quality
% Reported % ““True” % Noise
At2g24940 78 71 7 0.85
Atlg77540 93 63 30 0.78
At2g23090 102 70 31 0.71
Mm202773 109 76 32 0.73
At5g22580 93 79 13 0.88
CE5073 102 82 20 0.76
At3gl7210 105 91 13 0.75
At3g51030 105 62 42 0.69
At5g01610 166 76 89 0.65
At3g16450 99 72 27 0.72
Atlg23750 95 52 42 0.60
Acyl carrier 153 61 92 0.60
BMRB 5106 113 90 23 0.78
YgegX 216 47 168 0.63
P-gamma 100 80 20 0.78

Percentages of peaks under the heading PEAKS are for HNCACB experiment. % Reported peaks is the ratio of total reported peaks to
the maximum number of theoretically possible peaks. % “True’ peaks is the ratio of total assigned peaks to the maximum number of
theoretically possible peaks. This number is indicative of data completeness. % Noise peaks is the difference between % reported peaks
and % “‘true” peaks. This number is indicative of one source of noise in the input data and may be larger than 100%. Quality is an
indicator computed according to formulas (Eq. 5) and is a statistical measure of quality.



The initial steps of alignment and preliminary
quality check of the data prior are performed
rapidly, and these are used on an interactive basis
to decide whether the assignment should proceed.
PISTACHIO rapidly computes the number of spin
systems represented in the data and quality scores
for backbone and sidechain assignments. These
can be used to immediately predict, in advance of
the longer computation, the minimum number of
spin systems that likely will be assigned (see sup-
porting information). These quality factors can
indicate possible sources of error, such as align-
ment problems, an unacceptable number of noise
peaks, or data provided in unacceptable format. If
no difficulties are detected or if they can be cor-
rected automatically, PISTACHIO proceeds to the
iteration step. Otherwise, the user must intervene
to provide improved input data.

The workstation time needed for sidechain
assignment is substantially less than that for
backbone assignments. This is because of the cost
function Equation 1 is substantially simplified and
because an exact calculation of Equation 2 can be
performed. The time usually is linearly propor-
tional to the number of residues in protein. In
practice, our observations show a strong correla-
tion between the quality of sidechain and back-
bone assignments.

One of the advantages of PISTACHIO is that it
provides a ranked list of possible assignments for
ambiguous cases. In the case of the P-gamma
protein (Table 2), the presence of multiple peaks
resulted in PISTACHIO assignments to three res-
idues that later were corrected manually from
additional information. The corrected assignments
were those ranked second in the PISTACHIO re-
sults. The reporting of alternatives allows experi-
menters or structure determination software to
rapidly find alternative assignments that satisfy
additional information as it is added.

Protein At3gl6450 contained SAIL amino
acids. In this labeling pattern, each methyl group is
-3C'H(H), and each methylene group is
-BC'H?H-. As a result, different nuclei are af-
fected by isotope shifts that can be conforma-
tionally dependent. For the purposes of testing
robustness, the resulting shifts can be viewed as
random noise present in the chemical shift data.
The range of isotope shifts (now viewed as random
noise) had varied effects (shifts of 0.4-0.8 ppm) on
the *C* and '>C’ chemical shifts. Shifts beyond
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0.5 ppm generally are considered to be significant
for the purpose of assignment and structure
determination. Even though no corrections were
introduced for these isotope shifts, PISTACHIO
achieved 80% correct assignments for this 299-
residue protein. These results demonstrate that
PISTACHIO behaves robustly with respect to
noise. With the introduction of appropriate cor-
rections for expected isotope shifts, we expect that
the performance of PISTACHIO with proteins
containing SAIL amino acids will improve
measurably.

Discussion

Automation afforded by PISTACHIO has benefits
beyond improvements in the efficiency of the
assignment step. The introduction of formal the-
oretical protocols at each computational process-
ing step should lead to outcomes that are less
subjective and more reproducible. This will enable
objective comparisons that exclude variability
arising from the interpretive evaluation of experts.

PISTACHIO provides an extensible and robust
system for assignment. Experiments are described
by means of an experiment description matrix, and
models for assignment are constructed on the basis
of this matrix. Therefore, the addition of new
experiments does not require rewriting of the
software. PISTACHIO maintains internal records
of hard to assign regions and their corresponding
experimental data. This database, when sufficiently
populated, will be used as a statistical knowledge
base to identify difficult regions in new proteins
submitted for assignment.

PISTACHIO is part of a larger effort aimed at
introducing automated probabilistic analysis at
each step in a protein NMR structural study.
Automation procedures at each step should lead to
consistency and verifiability for the overall pro-
cess. The tools should also be flexible enough to
allow improvements in each step separately and to
allow the introduction of new steps that may
amend or replace existing steps. Since the overall
robustness and accuracy of the process is gated by
the weakest step, establishment of formal theo-
retical protocols at each step is paramount to the
overall success of the effort. In its current imple-
mentation, PISTACHIO uses peak lists supplied
by the user for experiments that report through-
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bond connectivities. Our goal is to derive these
peak lists in a probabilistic manner, as achieved by
the HIFI-NMR approach (H. R. Eghbalnia et al.,
submitted). Once an initial set of assignments is
available, these can be evaluated according to the
linear analysis of chemical shifts (LACS) algo-
rithm (Wang et al., 2005) to identify and correct
referencing problems and to identify outliers that
may indicate misassignments or unusual secondary
structure. In addition, assignments can be refined
by making use of probabilistic secondary structure
determinations from the set of assigned chemical
shifts and the peptide sequence as provided by the
PECAN approach (Eghbalnia et al., 2005) to re-
fine the chemical shift models used in scoring the
tripeptide assignments. One can envision a further
assignment iteration that makes use of NOESY
data and the consistency of assignments with
structural models. These refinements are included
in our future goals for this project.

Supporting information available

Intuitive discussion of the assignment algorithm,
examples of additional datasets analyzed by the
software, predictive value of the initially derived
quality factors (1 table and 3 figures) at http://
dx.doi.org/10.1007/s10858-005-7944-6.
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